Developmental Bisphenol A Exposure Modulates Immune-Related Diseases
نویسندگان
چکیده
Bisphenol A (BPA), used in polycarbonate plastics and epoxy resins, has a widespread exposure to humans. BPA is of concern for developmental exposure resulting in immunomodulation and disease development due to its ability to cross the placental barrier and presence in breast milk. BPA can use various mechanisms to modulate the immune system and affect diseases, including agonistic and antagonistic effects on many receptors (e.g., estrogen receptors), epigenetic modifications, acting on cell signaling pathways and, likely, the gut microbiome. Immune cell populations and function from the innate and adaptive immune system are altered by developmental BPA exposure, including decreased T regulatory (Treg) cells and upregulated pro- and anti-inflammatory cytokines and chemokines. Developmental BPA exposure can also contribute to the development of type 2 diabetes mellitus, allergy, asthma and mammary cancer disease by altering immune function. Multiple sclerosis and type 1 diabetes mellitus may also be exacerbated by BPA, although more research is needed. Additionally, BPA analogs, such as bisphenol S (BPS), have been increasing in use, and currently, little is known about their immune effects. Therefore, more studies should be conducted to determine if developmental exposure BPA and its analogs modulate immune responses and lead to immune-related diseases.
منابع مشابه
Developmental Exposure to Bisphenol A Modulates Innate but Not Adaptive Immune Responses to Influenza A Virus Infection
Bisphenol A (BPA) is used in numerous products, such as plastic bottles and food containers, from which it frequently leaches out and is consumed by humans. There is a growing public concern that BPA exposure may pose a significant threat to human health. Moreover, due to the widespread and constant nature of BPA exposure, not only adults but fetuses and neonates are also exposed to BPA. There ...
متن کاملBisphenol A: developmental toxicity from early prenatal exposure.
Bisphenol A (BPA) exposure has been documented in pregnant women, but consequences for development are not yet widely studied in human populations. This review presents research on the consequences for offspring of BPA exposure during pregnancy. Extensive work in laboratory rodents has evaluated survival and growth of the conceptus, interference with embryonic programs of development, morpholog...
متن کاملBisphenol-A and metabolic diseases: epigenetic, developmental and transgenerational basis
Exposure to environmental toxicants is now accepted as a factor contributing to the increasing incidence of obesity and metabolic diseases around the world. Such environmental compounds are known as 'obesogens'. Among them, bisphenol-A (BPA) is the most widespread and ubiquitous compound affecting humans and animals. Laboratory animal work has provided conclusive evidence that early-life exposu...
متن کاملEpigenetic perspective on the developmental effects of bisphenol A.
Bisphenol A (BPA) is an estrogenic environmental toxin widely used in the production of plastics and ubiquitous human exposure to this chemical has been proposed to be a potential risk to public health. Animal studies suggest that in utero and early postnatal exposure to this compound may produce a broad range of adverse effects, including impaired brain development, sexual differentiation, beh...
متن کاملInteractions Between Bisphenol A Exposure and GSTP1 Polymorphisms in Childhood Asthma
PURPOSE Bisphenol A (BPA) exposure may increase the risk of asthma. Genetic polymorphisms of oxidative stress-related genes, glutathione S-transferases (GSTM1, GSTP1), manganese superoxide dismutase, catalase, myeloperoxidase, and microsomal epoxide hydrolase may be related to BPA exposure. The aim is to evaluate whether oxidative stress genes modulates associations of BPA exposure with asthma....
متن کامل